Engineering Reliability
for Agentic Al

A mental model for moving beyond prompts
and building production-grade systems.

Modern LLMs present a fundamental engineering paradox.

The Power The Problem
Unprecedented flexibility Incredibly difficult to
and breadth of application. engineer against.

The model provides the capability,
but the system provides the reliability.

We are realising that to make
these models truly useful in
production, we have to constrain
them within well-engineered
systems. The focus must shift
from optimising the model in
isolation to designing the entire
workflow around it.

& NotebooklLM

Evidence: Agentic workflows consistently

outperform single-shot generation.
In 2024, Andrew Ng demonstrated a powerful concept: an older model (GPT-3.5) wrapped

in a simple loop—where it could critique and refine its own code—outperformed a

state-of-the-art model (GPT-4) that only had one attempt.

GPT-4 » Output

State-of-the-Art Model (Single Shot)

Source: Andrew Ng, 2024. https://www.youtube.com/watch?v=sal 78 ACtGTc

Generate

-
\

GPT-3.5

N

Critique

—»| Output

o

Refine

Outperforms

Older Model in an Agentic Workflow

& NotebookLM

A Mental Model for Engineering

Agentic Systems.

To bring order to the chaos of building with LLMs, we can categorise the stack into three
distinct, interconnected components. This provides a structured way to design,

build, and evaluate our systems.

Framework
The Blueprint

Runtime
The Execution

Harness
The Environment

(Inspired by LangChain's categorisation)
A NotebooklLM

The Framework: 2\ ModelSelection: Choosing the right LLM
. {0y and configuring its core parameters.
The agent’s
A Context Engineering: Architecting the
bluep rlnt. ;_E" Global State’ by managing window size

and compression to ensure the model has
the right information.

This defines what the agent is and

what 1t 1s ¢ apable of doin g. Agent Skills: Modular, dynamically

loaded instructions that replace
monolithic system prompts.

%9 Tools: The functions and APIs the agent

can call to interact with the world.

Abstraction: Code that decouples your

@9 application logic from a specific model

provider to prevent vendor lock-in.

& NotebooklLM

A Closer Look: Agent Skills are the modern
replacement for long system prompts.

Monolithic System Prompt

Lorem ipsum dolor sit amet, é‘&ﬁé‘&i&%pﬁdlplscmg

elit, sed do eiusmod mttempui“?nm didunt ut labore
et'dSIoh %%E‘gna allqua Ut eﬁ ma vemam,

qui's Hﬁﬁi{g%m ”;:m 37{ it .-!ME%{ ut

naegjsﬁl&."‘ of sit amet,
cu s c et llfl?] gu;hp;_@qmg EIlt 'sedldu eﬁ@gﬁgﬁ%&mpm

1ncﬂldun£ ut labnre et ‘dﬂlnre e magqpaﬂllqua,
nuﬁ{éiﬁ anintam CibrBore T IE olor sit,amet,

consectetur, adlpl.scmg +eiit7,j ﬁrﬁg_ dsi tempor
incll;wiunmuditarrfnt 18 Ditaigmadylit.

loruin

Dumping all rules, instructions, and personality
traits into one large prompt block.

X Cons: Becomes unwieldy, hard to maintain,
and wastes context on irrelevant instructions.

Modular Skills

Skill: Code Generation

Skill: Data Analysis

Skill: Creative Writing

Skill: Research & Fact-Checking

Skill: Translation & Localization

Packaging instructions into discrete ‘Skills’ that are
loaded dynamically only when the current task
requires them.

Pros: More efficient, maintainable, and scalable.
Allows for a more focused and relevant context.

& NotebooklLM

The Runtime: The agent’s execution engine.

This manages *how™ the agent runs, ensuring statefulness and control.

State & Memory: Handling persistence,
allowing the agent to resume its work if it
crashes or 1s paused.

Control Flow: The loop itself. Manages task
execution, handles retries on failure, and
prevents infinite loops.

Human-in-the-Loop: The capability to freeze
the agent’s state at critical junctures, allowing
a human to review and approve a plan before
execution.

&1 NotebookLM

The Harness: The agent’s environment.

This describes where the agent lives and how it is tested and constrained.

IAM (Identity and
Interface Access Management)
The connection to the Context-aware permissions.
outside world (e.g., an IDE, Not just if an agent can read
a web browser, a terminal). a file, but if it should for the
current task.

Evals (Evaluations)

A suite of simulated
scenarios used to grade the
agent’s reliability and
performance, catching
regressions before
deployment.

& NotebooklLM

The Complete System: Framework, Runtime, and Harness in action

Harness

>:| The Environment
T Runtime ‘ - :

The Execution Engine

: Model , Agent

' Selection | [~ Skills r
' | Framework - -
?— The Blueprint |

Interface ' $
' 3 _ Context -
\ ~—— Tools «— : i J @
: Engineering

&1 NotebookLM

The evolution is from Prompt Engineering
to System Engineering.

Prompt Engineering System Engineering

[oes
I}_

[=
I

This mental model brings order to the chaos.

D

Building reliable agentic Al requires a shift in perspective. By thinking in terms of a
complete system—comprising a well-defined Framework, a resilient Runtime, and a
secure Harness—we can move beyond the unpredictability of simple prompts and begin
engineering truly production-grade applications.

This model is an evolving abstraction, but it provides the structure we
need to build the next generation of intelligent systems.

& NotebooklLM

